AR glasses: Difference between revisions
Appearance
Xinreality (talk | contribs) No edit summary |
Xinreality (talk | contribs) No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{see also|Terms|Technical Terms}} | {{see also|Terms|Technical Terms}} | ||
{{see also|Smart glasses}} | {{see also|Smart glasses|AR Glasses}} | ||
[[File:ar glasses1.jpg|350px|right]] | [[File:ar glasses1.jpg|350px|right]] | ||
'''[[AR glasses]]''' (also known as '''[[augmented reality]] glasses''' or '''[[smart glasses]]''') are wearable [[head-mounted display|head-mounted devices]] that overlay computer-generated imagery, data or 3-D models onto a user’s direct view of the physical world. Unlike [[virtual reality]] (VR) headsets, which occlude outside vision, AR glasses use transparent or semi-transparent optics ([[waveguide]]s, [[prism]]s or [[optical combiner|combiners]]) so the wearer simultaneously sees real surroundings and virtual overlays.<ref name="SynopsysAROptics">Synopsys. "How Do Augmented Reality Optics Work?". Retrieved 30 April 2025. https://www.synopsys.com/glossary/what-is-augmented-reality-optics.html</ref><ref name="VarjoExplained">Varjo. "Virtual Reality, Augmented Reality and Mixed Reality Explained". Retrieved 30 April 2025. https://varjo.com/virtual-augmented-and-mixed-reality-explained/</ref> Modern eyewear integrates miniature [[microdisplay|micro-displays]] (often [[OLED]], [[LCD]], or [[LCoS]]), transparent [[waveguide]] optics, and an array of [[sensor]]s—[[RGB camera|RGB]]/[[depth camera|depth cameras]], an [[inertial measurement unit]] (IMU), [[eye tracking|eye-trackers]], and sometimes [[LiDAR]]—all driven by low-power [[system-on-chip|SoCs]]. Real-time [[simultaneous localization and mapping]] (SLAM) locks holograms to the environment while voice, [[hand tracking|hand-tracking]] or gaze serves as input.<ref name="SLAMBenchmark">Sarlin P. et al. (2022). "LaMAR – Benchmarking Localization and Mapping for Augmented Reality". Proceedings of ECCV 2022.</ref> In this way AR glasses provide hands-free, heads-up access to information – for example showing navigation cues, text annotations, or [[3D model]]s superimposed on actual objects – without obscuring the user’s natural vision. | '''[[AR glasses]]''' (also known as '''[[augmented reality]] glasses''' or '''[[smart glasses]]''') are wearable [[head-mounted display|head-mounted devices]] that overlay computer-generated imagery, data or 3-D models onto a user’s direct view of the physical world. Unlike [[virtual reality]] (VR) headsets, which occlude outside vision, AR glasses use transparent or semi-transparent optics ([[waveguide]]s, [[prism]]s or [[optical combiner|combiners]]) so the wearer simultaneously sees real surroundings and virtual overlays.<ref name="SynopsysAROptics">Synopsys. "How Do Augmented Reality Optics Work?". Retrieved 30 April 2025. https://www.synopsys.com/glossary/what-is-augmented-reality-optics.html</ref><ref name="VarjoExplained">Varjo. "Virtual Reality, Augmented Reality and Mixed Reality Explained". Retrieved 30 April 2025. https://varjo.com/virtual-augmented-and-mixed-reality-explained/</ref> Modern eyewear integrates miniature [[microdisplay|micro-displays]] (often [[OLED]], [[LCD]], or [[LCoS]]), transparent [[waveguide]] optics, and an array of [[sensor]]s—[[RGB camera|RGB]]/[[depth camera|depth cameras]], an [[inertial measurement unit]] (IMU), [[eye tracking|eye-trackers]], and sometimes [[LiDAR]]—all driven by low-power [[system-on-chip|SoCs]]. Real-time [[simultaneous localization and mapping]] (SLAM) locks holograms to the environment while voice, [[hand tracking|hand-tracking]] or gaze serves as input.<ref name="SLAMBenchmark">Sarlin P. et al. (2022). "LaMAR – Benchmarking Localization and Mapping for Augmented Reality". Proceedings of ECCV 2022. https://link.springer.com/chapter/10.1007/978-3-031-20071-7_40 https://lamar.ethz.ch/</ref> In this way AR glasses provide hands-free, heads-up access to information – for example showing navigation cues, text annotations, or [[3D model]]s superimposed on actual objects – without obscuring the user’s natural vision. | ||
AR glasses come in various [[form factor]]s (from bulky [[headset]]s to slim [[spectacles]]) but typically resemble ordinary eyewear. Some experimental prototypes like the AirySense system (shown above) allow a wearer to see and manipulate virtual objects as though they were real. Because the hardware must balance optics, electronics, and power in a compact package, current devices range from one-eye displays to full pair-of-glasses designs. In either case, all employ specialized optics (such as [[holographic waveguide|holographic]] or [[diffractive waveguide|diffractive]] [[waveguide]]s) to focus virtual images at a comfortable viewing distance while still letting the user see the world around them.<ref name="SynopsysAROptics" /><ref name="ARDisplaysReview">Xiong J. et al. (2021). "Augmented reality and virtual reality displays: perspectives and challenges". Light: Science & Applications. 10 (1): 216. doi:10.1038/s41377-021-00658-8</ref> | AR glasses come in various [[form factor]]s (from bulky [[headset]]s to slim [[spectacles]]) but typically resemble ordinary eyewear. Some experimental prototypes like the AirySense system (shown above) allow a wearer to see and manipulate virtual objects as though they were real. Because the hardware must balance optics, electronics, and power in a compact package, current devices range from one-eye displays to full pair-of-glasses designs. In either case, all employ specialized optics (such as [[holographic waveguide|holographic]] or [[diffractive waveguide|diffractive]] [[waveguide]]s) to focus virtual images at a comfortable viewing distance while still letting the user see the world around them.<ref name="SynopsysAROptics" /><ref name="ARDisplaysReview">Xiong J. et al. (2021). "Augmented reality and virtual reality displays: perspectives and challenges". Light: Science & Applications. 10 (1): 216. doi:10.1038/s41377-021-00658-8</ref> | ||
Line 9: | Line 9: | ||
The concept of see-through [[head-mounted display]]s (HMDs) dates back to the 1960s. [[Ivan Sutherland]]’s 1968 “Sword of Damocles” HMD is often cited as the first prototype, displaying dynamic wire-frame graphics aligned to the real world.<ref>Sutherland I. E. (1968). "A head-mounted three-dimensional display". AFIPS Conf. Proc. 33: 757–764.</ref> In 1990 the term “[[augmented reality]]” was coined by [[Thomas Caudell]] while describing a heads-up wiring guide for [[Boeing]] assembly.<ref>AWE XR. "Thomas Caudell – XR Hall of Fame". Retrieved 30 April 2025. https://www.awexr.com/hall-of-fame/20-thomas-caudell</ref> Early AR research explored wearable optics for [[pilot]]s and [[maintenance]]. However, practical AR glasses remained largely experimental until the 2010s. | The concept of see-through [[head-mounted display]]s (HMDs) dates back to the 1960s. [[Ivan Sutherland]]’s 1968 “Sword of Damocles” HMD is often cited as the first prototype, displaying dynamic wire-frame graphics aligned to the real world.<ref>Sutherland I. E. (1968). "A head-mounted three-dimensional display". AFIPS Conf. Proc. 33: 757–764.</ref> In 1990 the term “[[augmented reality]]” was coined by [[Thomas Caudell]] while describing a heads-up wiring guide for [[Boeing]] assembly.<ref>AWE XR. "Thomas Caudell – XR Hall of Fame". Retrieved 30 April 2025. https://www.awexr.com/hall-of-fame/20-thomas-caudell</ref> Early AR research explored wearable optics for [[pilot]]s and [[maintenance]]. However, practical AR glasses remained largely experimental until the 2010s. | ||
The first mass-public AR headset was arguably [[Google Glass]] (Explorer Edition released 2013), a US $1,500 [[monocular]] smartglass project that drew widespread attention and significant privacy debate.<ref name="GoogleGlassVerge">The Verge (May 2, 2013). "Google Glass review". Retrieved 30 April 2025. https://www.theverge.com/2013/ | The first mass-public AR headset was arguably [[Google Glass]] (Explorer Edition released 2013), a US $1,500 [[monocular]] smartglass project that drew widespread attention and significant privacy debate.<ref name="GoogleGlassVerge">The Verge (May 2, 2013). "Google Glass review". Retrieved 30 April 2025. https://www.theverge.com/2013/2/22/4013406/i-used-google-glass-its-the-future-with-monthly-updates</ref> Around the same time other companies like [[Vuzix]] (with products such as the M100 smart glass) and [[Epson]] ([[Epson Moverio|Moverio]] series) began selling eyewear with AR capabilities. The mid-2010s saw a wave of [[miniaturization]] and new optics. | ||
In 2016 [[Microsoft]] launched the first [[Microsoft HoloLens]] as the first untethered, [[binocular]] [[mixed reality|MR]] headset for [[enterprise]] use, featuring [[spatial mapping]] cameras and [[gesture control]].<ref name="HoloLensVerge">The Verge (April 1, 2016). "Microsoft HoloLens review: the future, now". Retrieved 30 April 2025. https://www.theverge.com/2016/4/1/ | In 2016 [[Microsoft]] launched the first [[Microsoft HoloLens]] as the first untethered, [[binocular]] [[mixed reality|MR]] headset for [[enterprise]] use, featuring [[spatial mapping]] cameras and [[gesture control]].<ref name="HoloLensVerge">The Verge (April 1, 2016). "Microsoft HoloLens review: the future, now". Retrieved 30 April 2025. https://www.theverge.com/2016/4/1/11334488/microsoft-hololens-video-augmented-reality-ar-headset-hands-on</ref> HoloLens (and its 2019 successor HoloLens 2) brought advanced [[SLAM]] and interaction (voice, hands) to AR glasses. In 2018 [[Magic Leap]] released the [[Magic Leap One]] “Creator Edition”, an MR headset using [[diffractive waveguide]] optics and a powerful tethered compute pack.<ref name="MagicLeapAxios">Axios (Dec 20, 2017). "Magic Leap finally unveils its first augmented reality headset". Retrieved 30 April 2025. https://www.axios.com/2018/01/05/magic-leap-finally-shows-its-ar-headset-1515110723</ref> Meanwhile [[consumer electronics|consumer]] AR eyewear efforts appeared: [[Snap Inc.]] introduced the original [[Snap Spectacles]] (2016) as camera glasses, and later the 4th generation Spectacles (2021) with dual [[waveguide]] displays, 6-DoF tracking, and AR effects for creators.<ref name="Spectacles2021">The Verge (May 20, 2021). "Snap unveils AR Spectacles that overlay digital images on the real world". Retrieved 30 April 2025. https://www.theverge.com/2021/5/20/22445481/snap-spectacles-ar-augmented-reality-announced</ref> Other attempts included fashionable AR frames like [[North Focals]] and [[Ray-Ban Stories]] (camera-equipped smartglasses by [[Meta Platforms]] and [[Ray-Ban]]). | ||
By the early 2020s, virtually all major tech players signaled interest in AR glasses. In 2023 [[Apple Inc.|Apple]] unveiled the [[Apple Vision Pro]], a premium [[mixed reality]] headset combining high-resolution [[micro-OLED]] displays (23 million pixels total), [[video pass-through]] AR, an [[Apple M2|M2]] [[system-on-chip|SoC]] and a custom [[Apple R1|R1]] sensor-fusion chip.<ref name="VisionProAvailability"> | By the early 2020s, virtually all major tech players signaled interest in AR glasses. In 2023 [[Apple Inc.|Apple]] unveiled the [[Apple Vision Pro]], a premium [[mixed reality]] headset combining high-resolution [[micro-OLED]] displays (23 million pixels total), [[video pass-through]] AR, an [[Apple M2|M2]] [[system-on-chip|SoC]] and a custom [[Apple R1|R1]] sensor-fusion chip.<ref name="VisionProAvailability"> | ||
Line 17: | Line 17: | ||
Press release. Retrieved 30 April 2025. | Press release. Retrieved 30 April 2025. | ||
https://www.apple.com/newsroom/2024/01/apple-vision-pro-available-in-the-us-on-february-2/ | https://www.apple.com/newsroom/2024/01/apple-vision-pro-available-in-the-us-on-february-2/ | ||
</ref> [[Meta Platforms]] (Facebook) showcased prototypes ([[Project Aria]]) and in 2024 discussed “[[Project Orion (Meta)|Project Orion]]” – a prototype glasses-style AR device featuring silicon-carbide [[microLED]] waveguides and an on-device [[AI]] assistant.<ref name="OrionVerge">The Verge (Oct 15, 2024). "Meta shows off Orion AR glasses prototype with AI assistant". Retrieved 30 April 2025. https://www.theverge.com/ | </ref> [[Meta Platforms]] (Facebook) showcased prototypes ([[Project Aria]]) and in 2024 discussed “[[Project Orion (Meta)|Project Orion]]” – a prototype glasses-style AR device featuring silicon-carbide [[microLED]] waveguides and an on-device [[AI]] assistant.<ref name="OrionVerge">The Verge (Oct 15, 2024). "Meta shows off Orion AR glasses prototype with AI assistant". Retrieved 30 April 2025. https://www.theverge.com/24253908/meta-orion-ar-glasses-demo-mark-zuckerberg-interview</ref> Other recent entries include [[Lenovo]]’s [[Lenovo ThinkReality A3|ThinkReality A3]], [[Pico (VR company)|Pico]]’s AR headsets, and continuing updates from enterprise vendors like [[Vuzix]] ([[Vuzix Blade 2|Blade 2]]) and [[Epson]] ([[Epson Moverio BT-45|Moverio BT-45 series]]). Industry analysts note that the modern wave of AR glasses began around 2012 and accelerated after 2015 with breakthroughs in [[waveguide]] optics and miniaturized components. As of 2025 the technology continues to evolve rapidly. | ||
== Technical components == | == Technical components == | ||
Line 29: | Line 29: | ||
Retrieved 30 April 2025. | Retrieved 30 April 2025. | ||
https://www.nature.com/articles/s41586-024-07386-0 | https://www.nature.com/articles/s41586-024-07386-0 | ||
</ref><ref name="NVIDIAAI">NVIDIA Blog (May 30, 2024). "NVIDIA Research Unveils AI-Powered Holographic Glasses Prototype". Retrieved 30 April 2025. https:// | </ref><ref name="NVIDIAAI">NVIDIA Blog (May 30, 2024). "NVIDIA Research Unveils AI-Powered Holographic Glasses Prototype". Retrieved 30 April 2025.https://developer.nvidia.com/blog/developing-smaller-lighter-extended-reality-glasses-using-ai/</ref> | ||
=== Sensors and Tracking === | === Sensors and Tracking === | ||
Line 35: | Line 35: | ||
=== Processing and Power === | === Processing and Power === | ||
Standalone (untethered) glasses rely on mobile [[system-on-chip|SoCs]] such as [[Qualcomm]]’s [[Snapdragon#XR (Extended Reality)|Snapdragon XR]] series or [[Apple Inc.|Apple]]’s dual-chip [[Apple M2|M2]] + [[Apple R1|R1]] architecture in the [[Apple Vision Pro]].<ref name="VisionProAvailability" /><ref name="QualcommXR2">Qualcomm. "Snapdragon XR2+ Gen 2 Platform". Retrieved 30 April 2025. https://www.qualcomm.com/products/mobile/snapdragon/xr- | Standalone (untethered) glasses rely on mobile [[system-on-chip|SoCs]] such as [[Qualcomm]]’s [[Snapdragon#XR (Extended Reality)|Snapdragon XR]] series or [[Apple Inc.|Apple]]’s dual-chip [[Apple M2|M2]] + [[Apple R1|R1]] architecture in the [[Apple Vision Pro]].<ref name="VisionProAvailability" /><ref name="QualcommXR2">Qualcomm. "Snapdragon XR2+ Gen 2 Platform". Retrieved 30 April 2025. https://www.qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-xr2-plus-gen-2-platform</ref> [[Tethered computing|Tethered]] designs (e.g., early [[Magic Leap One]]) off-load computation to a [[smartphone]] or belt-worn “compute puck” to reduce head-borne weight and potentially increase performance. [[Battery (electricity)|Battery]] life remains a significant constraint, typically lasting only a few hours under active use. | ||
== Types of AR glasses == | == Types of AR glasses == | ||
Line 87: | Line 87: | ||
==Privacy, ethics, and social acceptance== | ==Privacy, ethics, and social acceptance== | ||
AR glasses raise significant [[privacy]], [[ethics]], and social acceptance challenges. The inclusion of outward-facing [[camera]]s and [[microphone]]s leads to concerns about [[surveillance]] and recording without consent. The launch of [[Google Glass]] notably sparked public backlash, leading to bans in some venues and the pejorative term “Glasshole”.<ref name="GlassholeWired">Wired (Jan 22, 2015). "Google Glass Got Banned. Why Did We Ever Think It Was OK?". Retrieved 30 April 2025. https://www.wired.com/story/google-glass- | AR glasses raise significant [[privacy]], [[ethics]], and social acceptance challenges. The inclusion of outward-facing [[camera]]s and [[microphone]]s leads to concerns about [[surveillance]] and recording without consent. The launch of [[Google Glass]] notably sparked public backlash, leading to bans in some venues and the pejorative term “Glasshole”.<ref name="GlassholeWired">Wired (Jan 22, 2015). "Google Glass Got Banned. Why Did We Ever Think It Was OK?". Retrieved 30 April 2025. https://www.wired.com/story/google-glass-reasonable-expectation-of-privacy//</ref> | ||
Key concerns include: | Key concerns include: | ||
Line 107: | Line 107: | ||
==Market trends, forecasts, and adoption barriers== | ==Market trends, forecasts, and adoption barriers== | ||
The AR glasses market is growing, particularly in the [[enterprise software|enterprise]] sector where [[return on investment]] (ROI) through productivity gains can justify current costs. [[Consumer electronics|Consumer]] adoption is slower but anticipated to increase as technology matures. Market research firms like [[IDC]] estimate global AR/[[VR headset|VR]] headset shipments are growing, forecasting significant increases in the coming years after potential consolidation or pauses.<ref name="IDC2025">IDC (March 5, 2024). "AR/VR Headset Shipments Forecast to Rebound in 2024 Followed by Strong Growth in the Outer Years, According to IDC". Retrieved 30 April 2025. https://www.idc.com/getdoc.jsp?containerId=prUS51864224</ref><ref name="Neowin2025">Neowin (March 6, 2024). "IDC revises AR/VR headset shipment prediction for 2024, expects 41% growth in 2026". Retrieved 30 April 2025. https:// | The AR glasses market is growing, particularly in the [[enterprise software|enterprise]] sector where [[return on investment]] (ROI) through productivity gains can justify current costs. [[Consumer electronics|Consumer]] adoption is slower but anticipated to increase as technology matures. Market research firms like [[IDC]] estimate global AR/[[VR headset|VR]] headset shipments are growing, forecasting significant increases in the coming years after potential consolidation or pauses.<ref name="IDC2025">IDC (March 5, 2024). "AR/VR Headset Shipments Forecast to Rebound in 2024 Followed by Strong Growth in the Outer Years, According to IDC". Retrieved 30 April 2025. https://www.idc.com/getdoc.jsp?containerId=prUS51864224</ref><ref name="Neowin2025">Neowin (March 6, 2024). "IDC revises AR/VR headset shipment prediction for 2024, expects 41% growth in 2026". Retrieved 30 April 2025. https://my.idc.com/getdoc.jsp?containerId=prUS53278025/</ref> | ||
===Key Trends=== | ===Key Trends=== |