Jump to content

Light field display: Difference between revisions

No edit summary
Line 1: Line 1:
{{see also|Terms|Technical Terms}}
{{see also|Terms|Technical Terms}}
'''Light Field Display''' (LFD) is an advanced visualization technology designed to reproduce a [[light field]], the distribution of light rays in [[3D space]], including their intensity and direction.<ref name="WetzsteinPlenoptic">Wetzstein, G. (2020). Computational Displays: Achieving the Full Plenoptic Function. In ''SIGGRAPH Courses''. Association for Computing Machinery. doi:10.1145/3388769.3407420</ref> Unlike conventional 2D displays or [[stereoscopic display|stereoscopic 3D]] systems that present flat images or fixed viewpoints requiring glasses, light field displays aim to recreate how light naturally propagates from a real scene.<ref name="WetzsteinTensor">Wetzstein, G., Lanman, D., Hirsch, M., & Raskar, R. (2012). Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Transactions on Graphics, 31(4), Article 80. doi:10.1145/2185520.2185576</ref> This allows viewers to perceive genuine [[depth]], [[parallax]] (both horizontal and vertical), and perspective changes without special eyewear (in many implementations).<ref name="LookingGlass27">Looking Glass Factory. Looking Glass 27″ Light Field Display. Retrieved from https://lookingglassfactory.com/looking-glass-27</ref><ref name="LeiaVerge">Hollister, S. (2024, January 19). Leia is building a 3D empire on the back of the worst phone we've ever reviewed. The Verge. Retrieved from https://www.theverge.com/24036574/leia-glasses-free-3d-ces-2024</ref>
'''Light Field Display''' (LFD) is an advanced visualization technology designed to reproduce a [[light field]], the distribution of light rays in [[3D space]], including their intensity and direction.<ref name="WetzsteinPlenoptic">Wetzstein G. “Computational Displays.SIGGRAPH 2020 Course Notes</ref> Unlike conventional 2D displays or [[stereoscopic display|stereoscopic 3D]] systems that present flat images or fixed viewpoints requiring glasses, light field displays aim to recreate how light naturally propagates from a real scene.<ref name="WetzsteinTensor">Wetzstein, G., Lanman, D., Hirsch, M., & Raskar, R. (2012). Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Transactions on Graphics, 31(4), Article 80. doi:10.1145/2185520.2185576</ref> This allows viewers to perceive genuine [[depth]], [[parallax]] (both horizontal and vertical), and perspective changes without special eyewear (in many implementations).<ref name="LookingGlass27">Looking Glass Factory. Looking Glass 27″ Light Field Display. Retrieved from https://lookingglassfactory.com/looking-glass-27</ref><ref name="LeiaVerge">Hollister, S. (2024, January 19). Leia is building a 3D empire on the back of the worst phone we've ever reviewed. The Verge. Retrieved from https://www.theverge.com/24036574/leia-glasses-free-3d-ces-2024</ref>


This technology is considered crucial for the future of [[Virtual Reality]] (VR) and [[Augmented Reality]] (AR) because it can directly address the [[Vergence-accommodation conflict]] (VAC).<ref name="WiredVAC">Zhang, S. (2015, August 11). The Obscure Neuroscience Problem That's Plaguing VR. WIRED. Retrieved from https://www.wired.com/2015/08/obscure-neuroscience-problem-thats-plaguing-vr</ref><ref name="VACReview">Zhang, Z., Yan, X., Zhang, Y., Liu, Y., & Peng, Y. (2021). Vergence-accommodation conflict in optical see-through display: review and prospect. Opto-Electronic Advances, 4(9), 210003. doi:10.29026/oea.2021.210003</ref> By providing correct [[focal cues]] that match the [[vergence]] information, LFDs promise more immersive, realistic, and visually comfortable experiences, reducing eye strain and [[Virtual Reality Sickness|simulator sickness]] often associated with current HMDs.<ref name="XinRealityWiki">Near-eye light field display - XinReality Wiki. Retrieved from https://xinreality.com/wiki/Near-eye_light_field_display</ref><ref name="CrealWebsite">CREAL. Light-field: Seeing Virtual Worlds Naturally. Retrieved from https://creal.com/technology/</ref>
This technology is considered crucial for the future of [[Virtual Reality]] (VR) and [[Augmented Reality]] (AR) because it can directly address the [[Vergence-accommodation conflict]] (VAC).<ref name="WiredVAC">Zhang, S. (2015, August 11). The Obscure Neuroscience Problem That's Plaguing VR. WIRED. Retrieved from https://www.wired.com/2015/08/obscure-neuroscience-problem-thats-plaguing-vr</ref><ref name="VACReview">Zhang, Z., Yan, X., Zhang, Y., Liu, Y., & Peng, Y. (2021). Vergence-accommodation conflict in optical see-through display: review and prospect. Opto-Electronic Advances, 4(9), 210003. doi:10.29026/oea.2021.210003</ref> By providing correct [[focal cues]] that match the [[vergence]] information, LFDs promise more immersive, realistic, and visually comfortable experiences, reducing eye strain and [[Virtual Reality Sickness|simulator sickness]] often associated with current HMDs.<ref name="XinRealityWiki">Near-eye light field display - XinReality Wiki. Retrieved from https://xinreality.com/wiki/Near-eye_light_field_display</ref><ref name="CrealWebsite">CREAL. Light-field: Seeing Virtual Worlds Naturally. Retrieved from https://creal.com/technology/</ref>