Positional tracking: Difference between revisions
Appearance
RealEditor (talk | contribs) No edit summary |
RealEditor (talk | contribs) |
||
Line 34: | Line 34: | ||
<ref name=”8”> INDOTRAQ INDOOR TRACKING FOR VIRTUAL REALITY. Retrieved from https://blog.abt.com/2016/01/ces-2016-indotraq-indoor-tracking-for-virtual-reality/</ref> | <ref name=”8”> INDOTRAQ INDOOR TRACKING FOR VIRTUAL REALITY. Retrieved from https://blog.abt.com/2016/01/ces-2016-indotraq-indoor-tracking-for-virtual-reality/</ref> | ||
===Inertial | ===Inertial tracking=== | ||
Inertial tracking is made possible by the use of accelerometers and gyroscopes, commonly bundled together in chips called [[IMU]]s. Accelerometers measure linear acceleration, which is used to calculate velocity and the position of the object relative to an initial point. This is possible due to the mathematical relationship between position over time and velocity, and velocity and acceleration (4). A gyroscope measures angular velocity. It is a solid-state component based on microelectromechanical systems (MEMS) technology and operates based on the same principles as a mechanical gyro. From the angular velocity data provided by the gyroscope, angular position relative to the initial point is calculated. | |||
Inertial tracking is made possible by the use of accelerometers and gyroscopes. Accelerometers measure linear acceleration, which is used to calculate velocity and the position of the object relative to an initial point. This is possible due to the mathematical relationship between position over time and velocity, and velocity and acceleration (4). A gyroscope measures angular velocity. It is a solid-state component based on microelectromechanical systems (MEMS) technology and operates based on the same principles as a mechanical gyro. From the angular velocity data provided by the gyroscope, angular position relative to the initial point is calculated. | |||
This technology is inexpensive and can provide high update rates as well as low latency. On the other side, the calculations (i.e. integration and double-integration) of the values given by the accelerometers (acceleration) and gyroscope (angular velocity) that lead to the object’s position can result in a significant drift in position information - decreasing this method’s accuracy. | This technology is inexpensive and can provide high update rates as well as low latency. On the other side, the calculations (i.e. integration and double-integration) of the values given by the accelerometers (acceleration) and gyroscope (angular velocity) that lead to the object’s position can result in a significant drift in position information - decreasing this method’s accuracy. |