Jump to content

Depth cue: Difference between revisions

No edit summary
Line 176: Line 176:
<ref name="FacebookVAC2019">Facebook Research. (2019, March 28). *Vergence-Accommodation Conflict: Facebook Research Explains Why Varifocal Matters For Future VR*. YouTube. [https://www.youtube.com/watch?v=YWA4gVibKJE]</ref>
<ref name="FacebookVAC2019">Facebook Research. (2019, March 28). *Vergence-Accommodation Conflict: Facebook Research Explains Why Varifocal Matters For Future VR*. YouTube. [https://www.youtube.com/watch?v=YWA4gVibKJE]</ref>
<ref name="KramidaVAC2016">Kramida, Gregory. (2016). Resolving the vergence-accommodation conflict in head-mounted displays. *IEEE transactions on visualization and computer graphics, 22*(7), 1912-1931.</ref>
<ref name="KramidaVAC2016">Kramida, Gregory. (2016). Resolving the vergence-accommodation conflict in head-mounted displays. *IEEE transactions on visualization and computer graphics, 22*(7), 1912-1931.</ref>
<ref name="VosVAC2005">Vos, G. A., Barfield, W., & Yamamoto, T. (2005). The Virtual Vertical: Depth Perception and Discomfort in Stereoscopic Displays. *Presence: Teleoperators & Virtual Environments, 14*(6), 649-664.</ref>
<ref name="JonesVAC2008">Jones, J. A., Swan II, J. E., Singh, G., & Ellis, S. R. (2008). The effects of virtual reality, augmented reality, and motion parallax on egocentric depth perception. *Proceedings of the 5th symposium on Applied perception in graphics and visualization*, 9-16.</ref>
<ref name="JonesVAC2008">Jones, J. A., Swan II, J. E., Singh, G., & Ellis, S. R. (2008). The effects of virtual reality, augmented reality, and motion parallax on egocentric depth perception. *Proceedings of the 5th symposium on Applied perception in graphics and visualization*, 9-16.</ref>
<ref name="KonradVAC2016">Konrad, R., Cooper, E. A., & Banks, M. S. (2016). Towards the next generation of virtual and augmented reality displays. *Optics Express, 24*(15), 16800-16809. doi:10.1364/OE.24.016800</ref>
<ref name="KonradVAC2016">Konrad, R., Cooper, E. A., & Banks, M. S. (2016). Towards the next generation of virtual and augmented reality displays. *Optics Express, 24*(15), 16800-16809. doi:10.1364/OE.24.016800</ref>
Line 184: Line 183:
<ref name="Lanman2013">Lanman, D., & Luebke, D. (2013). Near-eye light field displays. *ACM Transactions on Graphics (TOG), 32*(6), 1-10. doi:10.1145/2508363.2508366</ref>
<ref name="Lanman2013">Lanman, D., & Luebke, D. (2013). Near-eye light field displays. *ACM Transactions on Graphics (TOG), 32*(6), 1-10. doi:10.1145/2508363.2508366</ref>
<ref name="MaimoneHolo2017">Maimone, A., Georgiou, A., & Kollin, J. S. (2017). Holographic near-eye displays for virtual and augmented reality. *ACM Transactions on Graphics (TOG), 36*(4), 1-16. doi:10.1145/3072959.3073610</ref>
<ref name="MaimoneHolo2017">Maimone, A., Georgiou, A., & Kollin, J. S. (2017). Holographic near-eye displays for virtual and augmented reality. *ACM Transactions on Graphics (TOG), 36*(4), 1-16. doi:10.1145/3072959.3073610</ref>
<ref name="HowardRogers2012Vol3">Howard, I. P., & Rogers, B. J. (2012). *Perceiving in Depth, Volume 3: Other Mechanisms of Depth Perception*. Oxford University Press.</ref>
<ref name="PubMedOcclusionAR">Kiyokawa, K., Billinghurst, M., Hayes, S. E., & Gupta, A. (2003). An occlusion-capable optical see-through head mount display for supporting co-located collaboration. *Proceedings. ISMAR 2003. Second IEEE and ACM International Symposium on Mixed and Augmented Reality*, 133-141. doi:10.1109/ISMAR.2003.1240688</ref>
<ref name="ChangEyeTrack2020">Chang, Jen-Hao Rick, et al. (2020). Toward a unified framework for hand-eye coordination in virtual reality. *2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)*. IEEE.</ref>
<ref name="WillemsenHMD2009">Willemsen, Peter, Colton, M. B., Creem-Regehr, S. H., & Thompson, W. B. (2009). The effects of head-mounted display mechanical properties and field of view on distance judgments in virtual environments. *ACM Transactions on Applied Perception (TAP), 6*(2), 1-14.</ref>
<ref name="WannAdaptation1995">Wann, John P., Simon Rushton, and Mark Mon-Williams. (1995). Natural problems for stereoscopic depth perception in virtual environments. *Vision research, 35*(19), 2731-2736.</ref>
<ref name="WannAdaptation1995">Wann, John P., Simon Rushton, and Mark Mon-Williams. (1995). Natural problems for stereoscopic depth perception in virtual environments. *Vision research, 35*(19), 2731-2736.</ref>
<ref name="ShibataComfortZone2011">Shibata, Takashi, Kim, J., Hoffman, D. M., & Banks, M. S. (2011). The zone of comfort: Predicting visual discomfort with stereo displays. *Journal of vision, 11*(8), 11-11.</ref>
<ref name="ShibataComfortZone2011">Shibata, Takashi, Kim, J., Hoffman, D. M., & Banks, M. S. (2011). The zone of comfort: Predicting visual discomfort with stereo displays. *Journal of vision, 11*(8), 11-11.</ref>
<ref name="DuchowskiDoF2014">Duchowski, Andrew T., et al. (2014). Reducing visual discomfort with HMDs using dynamic depth of field. *IEEE computer graphics and applications, 34*(5), 34-41.</ref>
<ref name="DuchowskiDoF2014">Duchowski, Andrew T., et al. (2014). Reducing visual discomfort with HMDs using dynamic depth of field. *IEEE computer graphics and applications, 34*(5), 34-41.</ref>
<ref name="ErnstCrossModal2002">Ernst, Marc O., and Martin S. Banks. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. *Nature, 415*(6870), 429-433.</ref>
<ref name="MildenhallNeRF2020">Mildenhall, Ben, et al. (2020). Nerf: Representing scenes as neural radiance fields for view synthesis. *European conference on computer vision*. Springer, Cham.</ref>
<ref name="MildenhallNeRF2020">Mildenhall, Ben, et al. (2020). Nerf: Representing scenes as neural radiance fields for view synthesis. *European conference on computer vision*. Springer, Cham.</ref>
</references>
</references>