Light field display: Difference between revisions
Appearance
RealEditor (talk | contribs) No edit summary |
RealEditor (talk | contribs) |
||
Line 53: | Line 53: | ||
Light Field Lab. *SolidLight™ Platform Overview.* https://www.lightfieldlab.com/ (accessed 3 May 2025). | Light Field Lab. *SolidLight™ Platform Overview.* https://www.lightfieldlab.com/ (accessed 3 May 2025). | ||
</ref><ref name="Maimone2017HolographicNED">Maimone, A., Georgiou, A., & Kollin, J. S. (2017). Holographic near-eye displays for virtual and augmented reality. ACM Transactions on Graphics, 36(4), Article 85. doi:10.1145/3072959.3073624</ref> This is explored for compact AR/VR systems. | </ref><ref name="Maimone2017HolographicNED">Maimone, A., Georgiou, A., & Kollin, J. S. (2017). Holographic near-eye displays for virtual and augmented reality. ACM Transactions on Graphics, 36(4), Article 85. doi:10.1145/3072959.3073624</ref> This is explored for compact AR/VR systems. | ||
* '''Time-Multiplexed Displays:''' Different views or directional illumination patterns are presented rapidly in sequence. If cycled faster than human perception, this creates the illusion of a continuous light field. Can be combined with other techniques like directional backlighting.<ref name="Liu2014OSTHMD">Liu, S., Cheng, D., & Hua, H. (2014). An optical see-through head mounted display with addressable focal planes. 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 33-42. doi:10.1109/ISMAR.2014.6948403</ref> | * '''Time-Multiplexed Displays:''' This is what CREAL is doing. Different views or directional illumination patterns are presented rapidly in sequence. If cycled faster than human perception, this creates the illusion of a continuous light field. Can be combined with other techniques like directional backlighting.<ref name="Liu2014OSTHMD">Liu, S., Cheng, D., & Hua, H. (2014). An optical see-through head mounted display with addressable focal planes. 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 33-42. doi:10.1109/ISMAR.2014.6948403</ref> | ||
* '''Holographic and Diffractive Approaches:''' While [[Holographic display|holographic displays]] reconstruct wavefronts through diffraction, some LFDs utilize holographic optical elements (HOEs) or related diffractive principles to achieve high angular resolution and potentially overcome MLA limitations.<ref name="SpringerReview2021">M. Martínez-Corral, Z. Guan, Y. Li, Z. Xiong, B. Javidi, “Review of light field technologies,” *Visual Computing for Industry, Biomedicine and Art*, 4 (1): 29, 2021, doi:10.1186/s42492-021-00096-8.</ref> Some companies use "holographic" terminology for their high-density LFDs.<ref name="ForbesLightField">C. Fink, “Light Field Lab Raises $50 Million to Bring SolidLight Holograms Into the Real World,” *Forbes*, 8 Feb 2023. Available: https://www.forbes.com/sites/charliefink/2023/02/08/light-field-lab-raises-50m-to-bring-solidlight-holograms-into-the-real-world/ (accessed 30 Apr 2025).</ref> | * '''Holographic and Diffractive Approaches:''' While [[Holographic display|holographic displays]] reconstruct wavefronts through diffraction, some LFDs utilize holographic optical elements (HOEs) or related diffractive principles to achieve high angular resolution and potentially overcome MLA limitations.<ref name="SpringerReview2021">M. Martínez-Corral, Z. Guan, Y. Li, Z. Xiong, B. Javidi, “Review of light field technologies,” *Visual Computing for Industry, Biomedicine and Art*, 4 (1): 29, 2021, doi:10.1186/s42492-021-00096-8.</ref> Some companies use "holographic" terminology for their high-density LFDs.<ref name="ForbesLightField">C. Fink, “Light Field Lab Raises $50 Million to Bring SolidLight Holograms Into the Real World,” *Forbes*, 8 Feb 2023. Available: https://www.forbes.com/sites/charliefink/2023/02/08/light-field-lab-raises-50m-to-bring-solidlight-holograms-into-the-real-world/ (accessed 30 Apr 2025).</ref> | ||