Focal surface display: Difference between revisions
Appearance
Xinreality (talk | contribs) No edit summary |
Xinreality (talk | contribs) No edit summary |
||
Line 33: | Line 33: | ||
Different HMD architectures have been proposed to solve this problem and depict correct or near-correct retinal blur (Figure 3). The focal surface displays augment regular HMDs with a spatial light modulator that “acts as a dynamic freeform lens, shaping synthesized focal surfaces to conform to the virtual scene geometry.” Furthermore, Oculus Research has introduced “a framework to decompose target focal stacks and depth maps into one or more pairs of piecewise smooth focal surfaces and underlying display images,” building on “recent developments in "optimized blending" to implement a multifocal display that allows the accurate depiction of occluding, semi-transparent, and reflective objects.” <ref name=”5”></ref> | Different HMD architectures have been proposed to solve this problem and depict correct or near-correct retinal blur (Figure 3). The focal surface displays augment regular HMDs with a spatial light modulator that “acts as a dynamic freeform lens, shaping synthesized focal surfaces to conform to the virtual scene geometry.” Furthermore, Oculus Research has introduced “a framework to decompose target focal stacks and depth maps into one or more pairs of piecewise smooth focal surfaces and underlying display images,” building on “recent developments in "optimized blending" to implement a multifocal display that allows the accurate depiction of occluding, semi-transparent, and reflective objects.” <ref name=”5”></ref> | ||
Contrary to multifocal displays with fixed focal surfaces, the phase modulator shapes focal surfaces to conform to the scene geometry. A set of color images are produced and mapped onto a corresponding focal surface (Figure 4), with visual appearance being rendered by “tracing rays from the eye through the optics, and accumulating the color values for each focal surface.” Furthermore, Matsuda ''et al''. (2017) explain that their “algorithm sequentially solves for first the focal surfaces, given the target depth map, and then the color | Contrary to multifocal displays with fixed focal surfaces, the phase modulator shapes focal surfaces to conform to the scene geometry. A set of color images are produced and mapped onto a corresponding focal surface (Figure 4), with visual appearance being rendered by “tracing rays from the eye through the optics, and accumulating the color values for each focal surface.” Furthermore, Matsuda ''et al''. (2017) explain that their “algorithm sequentially solves for first the focal surfaces, given the target depth map, and then the color images, full joint optimization is left for future work. Focal surfaces are adapted by nonlinear least squares optimization, minimizing the distance between the nearest depicted surface and the scene geometry. The color images, paired with each surface, are determined by linear least squares methods.” <ref name=”5”></ref> | ||
The focal surface display research team demonstrated that the technology depicts more accurate retinal blur, with lesser multiplexed images, with high resolution being maintained throughout the user’s accommodative range. <ref name=”5”></ref> | The focal surface display research team demonstrated that the technology depicts more accurate retinal blur, with lesser multiplexed images, with high resolution being maintained throughout the user’s accommodative range. <ref name=”5”></ref> |